Ch. 10 Notes - STOICHIOMETRY

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

 $1 \text{ MOLE} = 6.02 \text{ x } 10^{23} \text{ representative particles}$ representative particles = ATOMS, IONS, MOLECULES, & FORMULA UNITS ("funs")

CONVERSION FACTOR SUMMARY:			
6.02 x 10 ²³ representative particles	1 MOLE		
1 MOLE	6.02×10^{23} representative particles		
MOLAR MASS (g)	1 MOLE		
1 MOLE	MOLAR MASS (g)		
22.4 L (for a gas at STP)	1 MOLE		
1 MOLE	22.4 L (for a gas at STP)		

I. Stoichiometry

- A. **stoichiometry**—using balanced chemical equations to obtain info.
- B. information from a balanced equation
 - 1) numbers of particles: atoms, ions, molecules, formula units
 - 2) numbers of moles = mole ratios = coefficient ratios
 - 3) *mass* = molecular masses from the periodic table
 - 4) *volume*, if at STP, 22.4 L = 1 mol of gas

Only mass and number of atoms are conserved (reactant numbers = product numbers).

	_2_H ₂ (g) +	O ₂ (g)	\rightarrow	_2_ H ₂ O (g)
atoms in balancing	4 H	2 O :	=	4 H, 2 O
r.p.	2 molecules	1 molecule		2 molecules
mol	2 mol	1 mol		2 mol
g	4(1.01) = 4.04	2(16.00) = 32.00 =	=	2(18.02) = 36.04
L (STP)	2(22.4) = 44.8	22.4		2(22.4) = 44.8

II. Mole - Mole (MOL – MOL) Conversions

- A. the most important, most basic stoich calculation
- B. *uses the coefficients of a balanced equation* to compare the amounts of reactants and products
- C. coefficients are mole ratios
- D. the way to go from substance A to substance B
- E. mol mol is the only time the mole number in the conversion is not automatically 1. (Avogadro's #, molar mass, and 22.4 L (STP) are all equal to 1 mole.)

MOL – MOL : # mol B (new, ending substance – what is being asked for)
mol A (old, starting substance – what is given originally)
= coefficients

F. examples

EXAMPLE 1) How many moles of carbon monoxide are produced when carbon reacts with 0.750 mol of oxygen?

Unbalanced:
$$C + O_2 \rightarrow CO$$
 Balanced: $\underline{2}C + O_2 \rightarrow \underline{2}CO$
 $0.750 \frac{\text{mol } O_2}{\text{1 } \frac{\text{mol } CO}{\text{2}}} = 1.50 \frac{\text{mol } CO}{\text{1}}$

EXAMPLE 2) Aluminum reacts with oxygen gas to form aluminum oxide. Find the number of moles of both reactants, if 0.661 mol of product is formed.

$$Al + O_2 \rightarrow Al_2O_3$$
 $\underline{4}Al + \underline{3}O_2 \rightarrow \underline{2}Al_2O_3$

$$0.661 \frac{\text{mol Al}_2 O_3}{\text{2 molAl}_2 O_3} \times \underbrace{4 \text{ mol Al}}_{\text{2 molAl}_2 O_3} = \underbrace{1.32 \text{ mol Al}}_{\text{2 molAl}_2 O_3} \times \underbrace{3 \text{ mol O}_2}_{\text{2 molAl}_2 O_3} = \underbrace{0.992 \text{ mol O}_2}_{\text{2 molAl}_2 O_3}$$

- III. <u>MASS MASS Conversions</u> Using molar mass in stoich problems to predict masses of reactants and/or products
 - A. a balanced chemical equation can be used to compare masses of reactants and products
 - B. mass mass cannot change which substance you are dealing with; only mol mol can do that

"MASS – MASS": GIVEN g A x
$$\frac{1 \text{ mol A}}{PT \text{ g A}}$$
 x $\frac{CE \text{ mol B}}{CE \text{ mol A}}$ x $\frac{PT \text{ g B}}{1 \text{ mol B}}$

$$PT = periodic \ table, \ molar \ mass$$

$$CE = coefficients$$

C. examples

EXAMPLE 3) How many grams of hydrochloric acid are made from the reaction of 0.500 g of hydrogen gas with excess chlorine gas?

$$H_2 + Cl_2 \rightarrow HCl$$
 $H_2 + Cl_2 \rightarrow 2HCl$

GAME PLAN: KNOWN, PER.TABLE, COEFF., PER.TABLE
$$0.500 \text{ gH}_2 \text{ x } \underline{1 \text{ mol H}_2} \text{ x } \underline{2 \text{ mol HCl}} \text{ x } \underline{36.46 \text{ g HCl}} = \underline{18.0 \text{ g HCl}}$$

$$2.02 \text{ gH}_2 \text{ 1 mol H}_2 \text{ 1 mol HCl}$$

EXAMPLE 4) Calculate the numbers of grams of products formed when 25.0 g of sodium nitrate decomposes into sodium nitrite and oxygen.

$$NaNO_{3} \rightarrow NaNO_{2} + O_{2} \qquad \underline{2}NaNO_{3} \rightarrow \underline{2}NaNO_{2} + O_{2}$$

$$25.0 \text{ g NaNO}_{3} \times \underline{1 \text{ mol NaNO}_{3}} \times \underline{2 \text{ mol NaNO}_{2}} \times \underline{69.00 \text{ g NaNO}_{2}} = \underline{20.3 \text{ g NaNO}_{2}}$$

$$84.99 \text{ g NaNO}_{3} \times \underline{1 \text{ mol NaNO}_{3}} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}} \times \underline{32.00 \text{ g O}_{2}} = \underline{4.71 \text{ g O}_{2}}$$

$$84.99 \text{ g NaNO}_{3} - 2 \text{ mol NaNO}_{3} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}}$$

IV. MOLE-MASS (or MASS-MOLE) Conversions

EXAMPLE 5) How many g of water are produced from the complete combustion of C_2H_2 ?

$$C_2H_2 + O_2 \rightarrow CO_2 + H_2O$$
 $\underline{2}C_2H_2 + \underline{5}O_2 \rightarrow \underline{4}CO_2 + \underline{2}H_2O$
 $0.6829 \frac{\text{mol } C_2H_2}{\text{2 mol } C_2H_2} \times \underbrace{\frac{18.02 \text{ g } H_2O}{1 \text{ mol } H_2O}}_{\text{2 mol } C_2H_2} = \underbrace{12.31 \text{ g } H_2O}_{\text{2 mol } C_2H_2}$

EXAMPLE 6) Using the equation $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$ how many moles of O_2 would be needed to produce 56.09 g of CO_2 ?

$$56.09 \frac{\text{g CO}_2}{\text{g CO}_2} \times \frac{1 \text{ mol CO}_2}{44.01 \frac{\text{g CO}_2}{\text{g CO}_2}} \times \frac{5 \text{ mol O}_2}{4 \frac{\text{mol CO}_2}{\text{mol CO}_2}} = \frac{1.593 \text{ mol O}_2}{4 \frac{\text{mol CO}_2}{\text{mol CO}_2}}$$

V. MASS-VOLUME (or VOLUME – MASS) Conversions - Using molar volume in stoich problems

```
"WASS – VOLUME": (gases @ STP)

GIVEN g A x 1 mol A x CE mol B x 22.4 L B

PT g A CE mol A 1 mol B

"VOLUME – MASS": (gases @ STP)

GIVEN L A x 1 mol A x CE mol B x PT g B

22.4 L A CE mol A 1 mol B

PT = periodic table, molar mass CE = coefficients
```

EXAMPLE 7) How many L of oxygen are produced from the decomposition of 3.50 g of water at STP?

```
H_2O \rightarrow H_2 + O_2 \underline{2}H_2O \rightarrow \underline{2}H_2 + O_2
3.50 \underline{g}H_2O \times \underline{1} \frac{\text{mol } H_2O}{18.02} \times \underline{1} \frac{1}{\text{mol } O_2} \times \underline{22.4 \text{ L } O_2} = \underline{2.17 \text{ L } O_2}
```

EXAMPLE 8) Using the equation $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$, how many liters of oxygen gas are needed when 5.02 g of C_2H_2 undergoes complete combustion under STP conditions?

```
5.02 \frac{\text{g C}_2\text{H}_2}{\text{g C}_2\text{H}_2} \times \frac{1 \text{ mol C}_2\text{H}_2}{26.04 \text{ g C}_2\text{H}_2} \times \frac{5 \text{ mol O}_2}{2 \text{ mol C}_2\text{H}_2} \times \frac{22.4 \text{ L O}_2}{1 \text{ mol O}_2} = 10.8 \text{ L O}_2
```

```
VI. VOLUME-VOLUME Conversions
```

```
"VOLUME – VOLUME": (gases @ STP)

GIVEN L A x 1 mol A z CE mol B x 22.4 L B 1 mol B

CE = coefficients (SHORT CUT: compare coefficients!)
```

EXAMPLE 9) How many liters of carbon dioxide are produced from 0.252 L of hydrochloric acid reacting with excess sodium bicarbonate?

$$NaHCO_3 + HCl \rightarrow NaCl + CO_2 + H_2O$$

$$0.252 \text{ L-HCl-} \times 1 \text{ mol HCl-} \times 1 \text{ mol CO}_2 \times 22.4 \text{ L-CO}_2 = 0.252 \text{ L-CO}_2$$

SHORTCUT: coefficients = 1 mol HCl to 1 mol CO_2 , so 0.252 L HCl = 0.252 L CO_2

EXAMPLE 10) How many L of sulfur trioxide are produced from the reaction of 36.1 L of oxygen with sulfur dioxide at STP?

$$SO_2 + O_2 \rightarrow SO_3$$
 $2SO_2 + O_2 \rightarrow 2SO_3$

$$36.1 \frac{\text{L O}_2}{\text{L O}_2} \times \frac{1 \text{ mol O}_2}{22.4 \text{ L O}_2} \times \frac{2 \text{ mol SO}_3}{1 \text{ mol O}_2} \times \frac{22.4 \text{ L SO}_3}{1 \text{ mol SO}_3} = 72.2 \text{ L SO}_3$$

SHORTCUT: coefficient of $O_2 = 1$; coefficient of $SO_3 = 2$ 36.1 L x 2 = 72.2 L SO_3

VII. MASS – PARTICLE (or PARTICLE-MASS) Conversions

```
"MASS – PARTICLE": (specify the type of r.p.)

GIVEN gA x 1 mol A r CE mol B x (6.02 x 10<sup>23</sup>) r.p. B

PT g A CE mol A 1 mol B

"PARTICLE – MASS": (specify the type of r.p.)

GIVEN r.p. A x 1 mol A r CE mol B x PT g B

(6.02 x 10<sup>23</sup>) r.p. A CE mol A 1 mol B

PT = periodic table, molar mass

CE = coefficients
```

EXAMPLE 11) How many r.p. of barium sulfate are made from reacting 5.33 g of barium hydroxide with sulfuric acid?

$$Ba(OH)_{2} + H_{2}SO_{4} \rightarrow BaSO_{4} + H_{2}O$$

$$Ba(OH)_{2} + H_{2}SO_{4} \rightarrow BaSO_{4} + 2H_{2}O$$

$$5.33 \text{ g Ba(OH)}_{2} \times 1 \text{ mol Ba(OH)}_{2} \times 1 \text{ mol BaSO}_{4} \times 6.02 \times 10^{23} \text{ fun BaSO}_{4} = 1.87 \times 10^{22}$$

$$171.34 \text{ g Ba(OH)}_{2} \times 1 \text{ mol Ba(OH)}_{2} \times 1 \text{ mol BaSO}_{4} = 1.87 \times 10^{22}$$

EXAMPLE 12) How many r.p. of NH₃ are produced from reacting 11 g of hydrogen with excess nitrogen?

$$N_2 + H_2 \rightarrow NH_3$$
 $N_2 + \underline{3}H_2 \rightarrow \underline{2}NH_3$

$$11 \frac{g H_2}{g H_2} \times \frac{1 \text{ mol } H_2}{2.02 - g H_2} \times \frac{2 \text{ mol } NH_3}{3 \text{ mol } H_2} \times \frac{6.02 \times 10^{23} \text{ molecules } NH_3}{1 \text{ mol } NH_3} = \frac{2.2 \times 10^{24} \text{ molecules } NH_3}{2.02 - g H_2}$$

VIII. Limiting Reactant (Limiting Reagent)

- A. **limiting reactant**—the reactant present in the smallest quantity, limiting the amount of product being made
- B. excess reactant—the reactant present in a greater quantity than the limiting reactant; does not limit formation of product
- C. examples

EXAMPLE 13) Aluminum metal reacts with chlorine gas to form aluminum chloride.

If 5.40 mol of aluminum and 8.00 mol of chlorine are available...

- A) Which is the limiting reactant?
- C) How many moles of product form?
- B) Which is the excess reactant?
- D) How many moles of excess reactant are left over?

$$Al + Cl_2 \rightarrow AlCl_3$$

$$2Al + 3Cl_2 \rightarrow 2AlCl_3$$
5.40 mol 8.00 mol
(HAVE) (HAVE)

$$5.40 \frac{\text{mol Al}}{\text{mol Al}} \times \frac{3 \text{ mol Cl}_2}{2 \frac{\text{mol Al}}{}} = 8.10 \text{ mol Cl}_2 \text{ needed} \dots$$

8.10 mol Cl₂ are needed to react with 5.40 mol Al. There are only 8.00 mol Cl₂ available.

A) Cl_2 is the limiting reactant.

If Cl₂ is limiting, Al is in excess. Confirm this by showing all work.

8.00 mol Cl₂ x
$$\underline{2 \text{ mol Al}} = 5.33 \text{ mol Al } needed$$

 3 mol Cl_2

- B) Al is the excess reactant.
- C) *** Use the limiting reactant to find the product, since that is the chemical limiting the yield.

8.00
$$\frac{\text{mol Cl}_2}{\text{mol AlCl}_3} = \frac{5.33 \text{ mol AlCl}_3}{3 \frac{\text{mol Cl}_2}{3 \text{ mol Cl}_2}}$$

D) Remaining excess reactant =
$$(given - used)$$
 5.40 – 5.33 mol Al = 0.07 mol Al

$$5.40 - 5.33 \text{ mol Al} = 0.07 \text{ mol Al}$$

EXAMPLE 14) Use the equation $H_4B_6O_{11} + H_2O \rightarrow H_3BO_3$

If 35.00 g of $H_4B_6O_{11}$ and 35.00 g of H_2O are available...

- A) Which is the limiting reactant?
- C) How many grams of product form?
- B) Which is the excess reactant?
- D) How many grams of excess reactant are left over?

$$H_4B_6O_{11} + H_2O \rightarrow H_3BO_3$$
 $H_4B_6O_{11} + 7H_2O \rightarrow 6H_3BO_3$ 35.00 g (HAVE) (HAVE)

$$35.00 \text{ g-H}_4\text{B}_6\text{O}_{1+} \text{ x} \quad \frac{1 \text{ mol-H}_4\text{B}_6\text{O}_{1+}}{244.90 \text{ g-H}_4\text{B}_6\text{O}_{1+}} \quad \text{x} \quad \frac{7 \text{ mol-H}_2\text{O}}{1 \text{ mol-H}_4\text{B}_6\text{O}_{1+}} \quad \text{x} \quad \frac{18.02 \text{ g-H}_2\text{O}}{1 \text{ mol-H}_2\text{O}} = 18.03 \text{ g-H}_2\text{O} \text{ needed}$$

18.03 g H_2O are needed to react with 35.00 g $H_4B_6O_{11}$. There are 35.00 g H_2O available.

B) H_2O is the excess reactant.

If H_2O is in excess, $H_4B_6O_{11}$ must be limiting. Confirm this by showing all work.

35.00 g H₂O x $\frac{1 \text{ mol H}_2O}{18.02 \text{ g H}_2O}$ x $\frac{1 \text{ mol H}_4B_6O_{11}}{7 \text{ mol H}_2O}$ x $\frac{244.90 \text{ g H}_4B_6O_{11}}{1 \text{ mol H}_4B_6O_{11}} = 67.95 \text{ g H}_4B_6O_{11}$ needed

- A) $H_4B_6O_{11}$ is the limiting reactant.
- C) *** Use the limiting reactant to find the product, since that is the chemical limiting the yield.

$$35.00 \frac{g H_4 B_6 O_{11}}{g H_4 B_6 O_{11}} \times \frac{1 \text{ mol } H_4 B_6 O_{11}}{1 \text{ mol } H_4 B_6 O_{11}} \times \frac{6 \text{ mol } H_3 BO_3}{1 \text{ mol } H_4 B_6 O_{11}} \times \frac{61.83 \text{ g } H_3 BO_3}{1 \text{ mol } H_3 BO_3} = \frac{53.02 \text{ g } H_3 BO_3}{1 \text{ mol } H_4 B_6 O_{11}} \times \frac{61.83 \text{ g } H_3 BO_3}{1 \text{ mol } H_3 BO_3}$$

- D) Remaining excess reactant = (given used) $35.00 18.03 \text{ g H}_2\text{O} = 16.97 \text{ g H}_2\text{O}$
 - IX. Percent Yield
 - A. **percent yield**—percentage of product recovered; comparison of actual and theoretical yields
 - B. actual yield—amount of product obtained in lab
 - C. **theoretical yield**—amount of product predicted by the math (theory)

- D. examples
- **EXAMPLE 15**) 35.0 g of product should be recovered from an experiment. A student collects 22.9 g at the end of the lab. What is the percent yield?

$$\frac{22.9 \text{ g}}{35.0 \text{ g}} \times 100 = 65.4\%$$

EXAMPLE 16) What is the percent yield if 2.89 g of sodium chloride is produced when 1.99 g of hydrochloric acid reacts with excess sodium hydroxide?

$$HC1 + NaOH \rightarrow NaC1 + H_2O$$
 Percent yield implies product yield.

Actual yield = 2.89 g NaCl Theoretical yield = ?

1.99 g HCl x $\frac{1 \text{ mol HCl}}{36.46 \text{ g HCl}}$ x $\frac{1 \text{ mol NaCl}}{1 \text{ mol HCl}}$ x $\frac{58.44 \text{ g NaCl}}{1 \text{ mol NaCl}}$ = 3.19 g NaCl theoretical yield

% YIELD =
$$\frac{\text{ACTUAL YIELD}}{\text{THEORETICAL YIELD}}$$
 x 100 = $\frac{2.89 \text{ g NaCl}}{3.19 \text{ g NaCl}}$ = $\frac{90.6\%}{1.10 \text{ g NaCl}}$

*** Summary of Stoich Dimensional Analysis (DA) Calculations ***

ONE STEP DA:		
Mole-mole:	$mol A \rightarrow mol B$	
TWO STEP DA:		
Mole-mass	$mol A \rightarrow g B$	molar masses to 0.01 g
Mass-mole	$g A \rightarrow mol B$	molar masses to 0.01 g
Mole-particle	$mol A \rightarrow r.p. B$	specify type of r.p.
Particle-mole	r.p. A \rightarrow mol B	specify type of r.p.
Mole-volume	$mol A \rightarrow L B$	gases at STP
Volume-mole	$L A \rightarrow mol B$	gases at STP
THREE STEP DA:		
Mass-mass	$g A \rightarrow g B$	molar masses to 0.01 g
Volume-volume	$LA \rightarrow LB$	gases at STP
Particle-particle	r.p. A → r.p. B	specify type of r.p.
Mass-Particle	g A → r.p. B	molar masses to 0.01 g; specify type of r.p.
Particle-Mass	r.p. A→ g B	specify type of r.p.; molar masses to 0.01 g
Volume-Particle	$L A \rightarrow r.p. B$	gases at STP; specify type of r.p
Particle-Volume	r.p. A \rightarrow L B	specify type of r.p; gases at STP
Mass-Volume	$g A \rightarrow L B$	molar masses to 0.01 g; gases at STP
Volume-Mass	$LA \rightarrow gB$	gases at STP; molar masses to 0.01 g